
1 AN EXAMINATION OF THE
PERFORMANCE OF TWO

ELECTROMAGNETIC SIMULATIONS ON
A BEOWULF-CLASS COMPUTER

Abstract: This paper uses fiuo electromagnetic sin~ulations to
examine some peyformance and conzprler issues on a Beowulj
class computer. Thrs Vpe of computer. hurlt,from mass-market,
commodity, of-the-shelfcomponents, has hmited communicatrons
performance and therejore also has a limited reglme ofcodes.for
whrch rt IS surtuhle. Thrs paper~jirst shows that these codes fall
wrthrn thls regime. and then exanunes peyformance data,
includrng run-trme, scalrng. compiler choices, and the use of
some hand-tuned optrmlzatrons, comparrng resultsfrom a Beowulj
wzth those,fiom a Cryv T3D. anda T3E.
Kqwords: Beow!$ cluster. pile o f PC.?, parallel computation,
electromugnetrcs. finlte-d@rence time-domam, physlcal optics,
radratmn rntegrul.

Daniel S. Katz I Tom Cwik, Thomas Sterling
Jet Propulsion Luborntory, California Jnstitute of Technology, Pasadena, CA

GMail: jDanie1.S. Katz, cwik)@pl.nasa.gov, tron@cacr.caltech.edu

mailto:cwik)@pl.nasa.gov
mailto:tron@cacr.caltech.edu

1 .I INTRODUCTION

A typical small Beowulf system, such as the machine at the Jet Propulsion
Laboratory (JPL) may consist of 16 nodes interconnected by 100Base-T Fast
Ethernet. Each node may include a single Intel Pentium Pro 200 MHz
microprocessor, 128 MBytes of DRAM, 2.5 GBytes of IDE disk, and PC1 bus
backplane, and an assortment of other devices. At least one node will have a video
card, monitor, keyboard, CD-ROM, floppy drive, and so forth. But the technology
is evolving so fast and price performance and price feature curves are changing so fast
that no two Beowulfs ever look exactly alike. Of course, this is also because the
pieces are almost always acquired from a mix of vendors and distributors. The
power of de facto standards for interoperability of subsystems has generated an open
market that provides a wealth of choices for customizing one's own version o f
Beowulf, or just maximizing cost advantage as prices fluctuate among sources.
Such a system will run the Linux (Husain et a]., 1996) operating system freely
available over the net or in low-cost and convenient CD-ROM distributions. In
addition, publicly available parallel processing libraries such as MPI (Snir et al.,
1996) and PVM (Giest et al., 1994) are used to harness the power of parallelism for
large application programs. A Beowulf system such as described here, taking
advantage of appropriate discounts, costs about $30K including all incidental
components such as low cost packaging.

as the number of processors grows, the choice of communications network is no
longer as clear. (If the machine can use a crossbar that can support the entire
machine, the choice is simply to use that crossbar switch.) Many choices exist o f
various topologies of small and large switches and hubs, and combinations thereof.

Naegling, the Beowulf-class system at the California Institute of Technology,
which currently has 140 nodes, has had a number of communications networks.
The first was a tree of 8- and 16-port hubs. At the top of the tree was a standard
100 Mbit/s 16-port crossbar, with full backplane bandwidth. Each port of this was
connected to a hub. Each hub had 100 Mbit/s ports connected to 8 or 16
computers; however, the backplane bandwidth of each hub was also 100 Mbitis.
The second topology used additional 16-port crossbars at the low level of the tree,
where 15 ports of each crossbar were connected to computers, and the last port was
connected to a high-level crossbar. A third network (which is the current topology)
involves 2 80-port switches, connected by 4 Gbitls links. Each switch is intended
to have 100 Mbit/s ports and full backplane bandwidth. More details about how
this network performs will be discussed in the two results sections.

The Beowulf approach represents a new business model for acquiring
computational capabilities. It complements rather than competes with the more
conventional vendor-centric systems-supplier approach. Beowulf is not for
everyone. Any site that would include a Beowulf cluster should have a systems
administrator already involved in supporting the network of workstations and PCs
that inhabit the workers' desks. Beowulf is a parallel computer, and as such, the
site must be willing to run parallel programs, either developed in-house or acquired
fiom others. Beowulf is a loosely coupled, distributed memory system, running
message-passing parallel programs that do not assume a shared memory space
across processors. Its long latencies require a favorable balance of computation to
communication and code written to balance the workload across processing nodes.
Within the constrained regime jn which Beowulf is appropriate, it should provide

ch ,/

At this time, there is no clearly typical medium to large'Beowulf system, since , l_'

the best performance to cost and often comparable perfonnance per node to vendor
offerings (Katz, et. al., 1998). This paper will examine two electromagnetic
simulation codes which fit within this re,' olme.

1.2 PHYSICAL OPTICS SIMULATION

The first code described in this paper (Imbriale and Cwik, 1994) is used to design
and analyze reflector antennas and telescope systems. It is based simply on a
discrete approximation of the radiation integral (Imbriale and Hodges, 1991). This
calculation replaces the actual reflector surface with a triangularly faceted
representation so that the reflector resembles a geodesic dome. The Physical Optics
(PO) current is assumed to be constant in magnitude and phase over each facet so
the radiation integral is reduced to a simple summation. This program has proven
to be surprisingly robust and usefi~l for the analysis of arbitrary reflectors,
particularly when the near-field is desired and the surface derivatives are not known.

Because of its simplicity, the algorithm has proven to be extremely easy to adapt
to the parallel computing architecture of a modest number of large-grain computing
elements. The code was initially parallelized on the Intel Paragon, and has since
been ported to the Cray T3D, T3E, and Beowulf architectures.

For generality, the code considers a dual-reflector calculation, as illustrated in
Figure 1, which can be thought of as three sequential operations: (1) computing
the currents on the first (sub-) reflector using the standard PO approximation: (2)
computing the currents on the second (main) reflector by utilizing the currents on
the first (sub-) reflector as the field generator; and (3) computing the required
observed field values by summing the fields from the currents on the second (main)
reflector. The most time-consuming part of the calculation is the computation of
currents on the second reflector due to the currents on the first, since for N triangles
on the first reflector. each of the M triangles on the second reflector require an N-
element sum over the first. At this time, the code has been parallelized by
distributing the M triangles on the second reflector, and having all processors store
all the currents on the N triangles of the first reflector (though the computation of the
currents of the first reflector is done in parallel.) Also, the calculation of observed
field data has been parallelized. So, the three steps listed above are all performed in
parallel. There are also sequential operations involved, such as 1 / 0 and the
triangulation of the reflector surfaces, some of which potentially could be performed
in parallel, but this would require a serious effort, and has not been done at this
time.

This code is written in FORTRAN, and has been parallelized using MPI.
Communication is required in two locations of the code. At the end of the first
step, after each processor has computed a portion of the currents on the first reflector,
the currents must be broadcast to all the processors. While this may be done in
many ways, a call to MPl-Allgathew is currently used. During the third step, each
processor calculates a partial value for each final observed field, by integrating over
the main reflector currents local to that processor. A global sum (an MPI-Reduce
call) is required to compute the complete result for each observed field value. Since
there are normally a number of far fields computed, currently there are that number of
global sums. These could be combined into a single global sum of larger length,
but this has not been done at this time, since the communication takes up such a
small portion of the overall run time.

Observation
Main reflector points

Feed

Sub-reflector
(faceted into

Figure 1 . The dual reflector Physical Optics problem, showing the source, the
two reflectors, and the observation points.

1.3 FDTD SIMULATION

The Finite-Difference Time-Domain (FDTD) code (Taflove, 1995) studied here is a
fairly simple example of a time-stepping partial differential equation (PDE) solution
over a physical problem domain which is distributed over the memory of a mesh of
processors. In traditional FDTD electromagnetic codes, there are generally six field
unknowns which are staggered in time and space. For the purposes of this paper,
they can be thought of as residing in a spatial cell, where each cell is updated at
each time step. This particular code adds two specific features. First, each field
component is split into two sub-components which are stored in memory and
updated separately. This is done in order to implement a boundary condition
(Berenger 1994). Second, the parallelization that was done for this code tried to
reduce the required communication, and therefore redundantly updates some of the
sub-components on the face of each processor’s domain, and communicates only
four of the sub-components on each face.

This code is written in FORTRAN using MPI. The decomposition performed
is two-dimensional (in x and y), whiie the spatial region modeled is three-
dimensional. The processors are mapped into a two-dimensional Cartesian mesh
using MPI’s facilities for Cartesian communicators, and each processor models a
physical domain that contains a subset of the entire physical domain in x and y, and
the entire domain in z. Because of this, at each time each processor swaps one fBce
(a complete y-z plane) of four sub-components in the ?x direction, and one face (a
complete x-z plane) of four other sub-components in the ?y direction. The
communication is done as follows: each processor issues an MPI-IRecv call to each
neighboring processor (usually 4, except on the edges of the processor mesh); each
processor fills and sends a buffer in each appropriate direction, suing an MPI-SSend

call; and finally, each processor does a number of MPl-Wait operations, followed by
unpacking the received data. This combination of calls should produce no
additional buffering of data, since the program is already doing some in an effort to
reduce the number of messages.

1.4 PO RESULTS

Timing results for the PO code in this paper are presented by breaking down the
overall timing into three parts. Part I is input I/O and triangulation of the main
reflector surface, some of which is done in parallel. No communication occurs in
part 1. Part I1 is triangulation of the sub-reflector surface (sequential), evaluation of
the currents on the sub-reflector (parallel), and evaluation of the currents on the main
reflector (parallel). A single MPlAllgathew occurs in part 11. Part 111 is evaluation
of the observed fields (parallel) and I/O (on only one processor). A number of 3
word global sums occur in part 111, one for each observation point. In the test cases
used here, there are 122 observation points. The Beowulf results are from the 16
node system, using the GNU g77 compiler.

Two different compilers were compared (Gnu g77 and Absoft f77) on the
Beowulf system. One set of indicative results Erom these runs are shown in Table
1 . For this code, the Absoft compiler produced code that was approximately 30%
faster, and this compiler was used hereafter.

It should be mentioned that the computation of the radiation integral in two
places (in parts I 1 and 111) originally had code of the form:

C E J K = CDEXP (- A J * A K R) .
where A J = (0 . do , 1 . d0) . This can be changed to:

On the T3D. these two changes led to improved results (the run-times were
reduced by 35 to 40%,) which are shown in this paper. When these changes were
applied to the Beowulf code using the second compiler, no significant performance
change was observed, leading to the conclusion that one of the optimizations
performed by this compiler was similar to this hand-optimization.

C E J K = DCMPLX (DCOS (AKR) , - D S I N (AKR)) .

Table 1. The effect of a two Beowulf compilers (gnu g77 and Absoff f77), shown
by timing results (in minutes) for PO code, for M=40,000, N=4,900.

It may be observed from Tables 2, 3, and 4 that the Beowulf code performs
slightly better than the T3D code, both in terms of absolute performance as well as
scaling from 1 to 64 processors. (Tables 2 and 3 contain results obtained on
Hyglac, and Table 4 contains results obtained on Naegling.) This performance
difference can be explained by the faster CPU on the Beowulf versus the T3D, and
the very simple and limited communication not enabling the T3D’s faster network
to influence the results. The scaling difference is more a function of 1/0, which is
both more direct and more simple on the Beowulf, and thus faster. By reducing
this part of the sequential time, scaling performance is improved. Another way to
look at this is to compare the results in the three tables. Clearly, scaling is better

in the larger test case, in which I/O is a smaller percentage of overall time. It is
also clear that the communications network used on Naegling is behaving as
designed for the PO code running on 4. 16, or 64 processors. Since the majority of
communication is single word global sums, this basically demonstrates that the
network has reasonable latency.

Table 2. Timing results (in seconds) for PO code, for M=40,000, N=400.

I M m b e r of . T3 11

Table 3. Timing results (in minutes) for PO code, for M=40,000, N=4,900.

Tables 5 , 6. and 7 show comparisons of complete run time for the 3 test
problems sizes, for the Beowulf, T3D. and T3E-600 systems. These demonstrate
good performance on the two Beowulf-class machines when compared with the T3D
in terms of overall performance, as well as when compared with the T3E-600 in
terms of price-performance. For all three test cases, the Beowulf scaling is better
than the T3D scaling, but the results are fairly close for the largest test case, where
the Beowulf being used is Naegling. This can be explained in large part by I/O
requirements and timings on the various machines. The IiO is close to constant for
all test cases over all machine sizes, so in some way it acts as serial code that hurts
scaling performance. The IiO is the fastest on Hyglac, and slowest on the T3D.
This is due to the number of nodes being used on the Beowulf machines, since
disks are NFS-mounted, and the more nodes there are, the slower the performance is
using NFS. The T3D forces all IiO to travel through its Y-MP front end, which
causes it to be very slow. Scaling on the T3D is generally as good as the small
Beowulf, and faster than the large Beowulf, again due mostly to I/O. It may be
observed that the speed-up of the second test case on the T3E is superlinear in
going from 1 to 4 processors. This is probably caused by a change in the ratio of
some of the size of some of the local arrays to the cache size dropping below 1.

Number o f I Beowulf i Cray i Cvay I

Table 5. Timing results (in seconds) for complete PO code, for M=40,000, N=400.

i 12.6 i 4.43 i 12.6 i 4.43

Table 7 . Timing results (in minutes) for complete PO code, for M=160,000,
N=10.000.

A hardware monitoring tool was used on the T3E to measure the number of
floating point operations in the M=40,000, N=4,900 test case as 132x1 0” floating
point operations. This gives a rate of 46, 44, and 120 MFLOPis on one processor
of the Beowulf, T3D, and T3E-600 respectively. These are fairly good (23,29, and
20% of peak, respectively) for RISC processors running FORTRAN code.

1.5 FDTD RESULTS

All FDTD results that are shown in this section use a fixed size local (per
processor) grid, of 69~69x76 cells. The overall grid sizes therefore range from
69x69~76 to 552~552~76 (on 1 to 64 processors). (All Beowulf results are fi-om
Naegling.) This is the largest local problem size that may be solved on the T3D,
and while the other machines have more local memory and could solve larger
problems, it seems more fair to use the same amount of local work for these
comparisons. In general, the FDTD method requires 10 to 20 points per
wavelength for accurate solutions, and a boundary region of 10 to 20 cells in each
direction is also needed. These grid sizes therefore correspond to scattering targets
ranging in size from 5 ~ 5 x 5 to 53~53x5 wavelengths.

Both available compilers were used on the Beowulf version of the FDTD code.
While the results are not tabulated in this paper, the Gnu g77 compiler produced
code which ran faster than the code produced by the Absoft f77 compiler. However,

the results were just a few percent different, rather than on the scale of the differences
shown by the PO code. All results shown here are from the Gnu g77 compiler.

Table 8 shows results on various machines and various numbers of processors in
units of CPU seconds per simulated time step. Complete simulations might
require hundreds to hundreds of thousands time steps, and the results can be scaled
accordingly, if complete simulation times are desired. Results are shown broken
into computation and communication times, where communication includes send,
receive, and buffer copy times.

1 Number o f I Beowulf Cray Cray

Table 8. Timing results (in computation - communication CPU seconds per time
step) for FDTD code, for fixed problem size per processor of 69~69x76 cells.

It is clear that the Beowulf and T3D computation times are comparable, while
the T3E times are about 3 times faster. This is reasonable, given the relative clock
rates (200, 150, and 300 MHz) and peak performances (200, 150, 600 MFLOP/s)
of the CPUs. As with the PO code, the T3D attains the highest fraction of peak
performance, the higher clock rate of the Beowulf gives it a slightly better
performance than the T3D, and the T3E obtains about the same fraction of peak
performance as the Beowulf. As this code has much more communication that the
PO code, there is a clear difference of an order of magnitude between the
communication times on the Beowulf and the T3D and T3E. However, since this
is still a relatively small amount of communication as compared with the amount of
computation, it doesn’t really effect the overall results.

The communications portion of the results from the Beowulf runs deserve firther
discussion. The choice of communication network to use on Naegling was always
difficult. For any Beowulf-class machine, the most general choice of network is a
large switch that provides good latency and bandwidth between any pair of ports,
while providing full backplane bandwidth between all the ports. Observing the
current marketplace, is appears that this is hard to build (at a reasonable cost) for
large numbers of ports. Today, it is not clear that anyone has succeeded for a
machine of Naegling’s size (1 00- 150 nodes at various times).

The current network on Naegling breaks the ports into groups of 20. The
hardware for the first two groups were recently upgraded, and the hardware for the
remaining groups will be upgraded in coming days. These changes in hardware
have created a situation where the communication times are not constant fiom one
day to the next, and additionally, for large runs, there can be a variation from one
run to the next on the same day. Multiple runs on 4 and 16 nodes produced
communication times that varied only within a few percent, while three successive
64-node runs that were most recently performed produced communication times of
0.67, 0.55, and 0.31 (seconds per time step.) These numbers were averaged to
obtain the 0.51 used in Table 8, though it could be argued that once the hardware
problems are solved, 0.3 1 (or lower) should be produced consistently. (Note: the
current problems appear to be in bandwidth, only; latencies both are acceptable and
have not been observed to vary more than a few percent.)

1.6 CONCLUSIONS

This paper has shown that for both parallel calculation of the radiation integral and
parallel finite-difference time-domain calculations, a Beowulf-class computer
provides slightly better perfonnance that a Cray T3D, at a much lower cost. The
limited amount of communication in the physical optics code defines it as being in
the heart of the regime in which Beowulf-class computing is appropriate, and thus it
makes a good test code for an examination of code performance and scaling, as well
as an examination of compiler options and other optimizations. The FDTD code
contains more communication, but the amount is still fairly small when compared
with the amount of computation, and this code is a good example of domain
decomposition PDE solvers. (The timing results from this code show trends that
are very similar to the results of other domain decomposition PDE solvers that have
been examined at JPL.)

An interesting observation is that for Beowulf-class computing, using
commodity hardware, the user also must be concerned with commodity sohare ,
including compilers. As compared with the T3D, where Cray supplies and updates
the best compiler it has available, the Beowulf system has many compilers available
from various vendors, and it is not clear that any one always produces better code
than the others. In addition to the compilers used in this paper, at least one other
exists (to which the authors did not have good access.) The various compilers also
accept various extensions to FORTRAN, which may make compilation of any
given code difficult or impossible without re-writing on some of it, unless of course
the code was written strictly in standard FORTRAN 77 (or FORTRAN 90), which
seems to be extremely uncommon.

It is also interesting to notice that the use hand-optimizations produces
indeterminate results in the final run times, again depending on which compiler
and which machine is used. Specific compiler optimization flags have not been
discussed in this paper. but the set of flags that was used in each case were those
that produced the fastest running code, and in most but not all cases, various
compiler flag options produced greater variation in run times that any hand
optimizations. The implication of this is that the user should try to be certain there
are no gross inefficiencies in the code to be compiled, and that it is more important
to choose the correct compiler and compiler flags. This is not a good situation.

The choice of communication network for a large Beowulf is certainly not
obvious. Current products in the marketplace have demonstrated scalable latencies,
but not scalable bandwidths. However, this may be changing, as seems to be
demonstrated by the new portions of Naegling’s network.

Overall, this paper has validated the choice of a Beowulf-class computer for both
the physical optics application (and other similar low-communication applications)
as well as for the finite-difference time-domain application (and other domain
decomposition PDE solvers). It has examined performance of these codes in terms
of comparison with the Cray T3D and T3E, scaling, and compiler issues, and
pointed out some “features” of which users of Beowulf-systems should be aware.

ACKNOWLEDGMENTS

The authors would like to acknowledge helpful conversations with John Salmon
and Jan Lindheim at Caltech, as well as the contribution of Bill Imbriale at JPL in
developing the original POP0 code studied here. The FDTD code studied here
includes large contributions made by Allen Taflove at Northwestern University.

The work described was performed at the Jet Propulsion Laboratory, California
Institute of Technology under contract with the National Aeronautics and Space
Administration. The Cray T3D supercomputer used in this investigation was
provided by funding from the NASA Oftices of Earth Science, Aeronautics, and
Space Science. Part of the research reported here was performed using the Beowulf
system operated by the Center for Advanced Computing Research at Caltech; access
to this facility was provided by Caltech. Access to the Cray T3E-600 was provided
by the Earth and Space Science (ESS) component of the NASA High Performance
Computing and Communication (HPCC) program.

REFERENCES

Berenger. J-P. (1 994). A perfectly matched layer for the absorption of electromagnetic
waves. .J. Comp. Physics 114: 185-200.

Giest, A.. Beguelin. A,, Dongarra, J.. Jiang, W.. Manchek. R., and Sunderam, V. (1994).
PVM: A Users’ Guide and Tutorial for fietworked and Parallel Computing, The
MIT Press. Cambridge, Mass.

Husain. K.. Parker. T., et al. (1996). Ked I fat Linwc Unleashed, Sams Publishing,
Indianapolis. Ind.

Imbriale, W. A. and Cwik, T. (1994). A simple physical optics algorithm perfect for
parallel computing architecture. In 10th Annual Review o f Progress in Appl. Comp.
Electromag.:434-441, Monterey, Cal.

Imbriale, W. A. and Hodges. R. (1991). Linear phase approximation in the triangular facet
near-field physical optics computer program. Appl. Comp. Electromag. SOC. J., h:74-
85.

Katz. D. S.. Cwik. T.. Kwan, B. H., Lou. J . Z., Springer, P. L., Sterling, T . L., and Wang, P.
(1998). An assessment of a Reowulf system for a wide class of‘ analysis and design
software. ‘1‘0 appear in Advances in Engineering Softw,are 29.

Snir, M., Otto. S. W.. Huss-Lederman. S.. Walker. D. W. and Dongarra. J. (1996). M P f :
The Complete Rejerence. The MI7 Press, Cambridge, Mass.

Taflove. A. (1995). Computational Electrodynamics: The Finite-DiSerence Time-
Domain A4ethod, Artech House. Norwood, Mass.

